Μαθηματικός γρίφος λύθηκε έπειτα από 100 χρόνια

Ο μεγάλος Ινδός μαθηματικός Σρινιβάσα Ραμανουτζάν έγραψε στο νεκροκρέβατό του κάποιες κρυπτικές συναρτήσεις που ισχυριζόταν ότι του εμφανίστηκαν στο όνειρό του, μαζί με κάποιες υποθέσεις για το πώς συμπεριφέρονται. Σχεδόν 100 χρόνια μετά, ερευνητές υποστηρίζουν πως απέδειξαν τις υποθέσεις του σωστές.

«Καταφέραμε να λύσουμε τα προβλήματα από τα τελευταία μυστηριώδη γράμματά του. Για τους μαθηματικούς που ασχολούνται με το συγκεκριμένο πεδίο, το πρόβλημα ήταν ανοιχτό για πάνω από ενενήντα χρόνια», δήλωσε ο Κεν Όνο, μαθηματικός του Πανεπιστημίου Έμορυ στην Ατλάντα των Ηνωμένων Πολιτειών.

Ο Ραμανουτζάν γεννήθηκε το 1887 σε ένα αγροτικό χωριό της Νότιας Ινδίας και ήταν σε μεγάλο βαθμό αυτοδίδακτος. Ο μύθος τον θέλει να είναι τόσο απορροφημένος στις σκέψεις και τους υπολογισμούς του για τα μαθηματικά που απέτυχε δύο φορές σε κολλέγιο της Ινδίας. Παρά το γεγονός ότι ήταν απομονωμένος από την παγκόσμια μαθηματική κοινότητα, η κλίση του Ραμανουτζάν τον οδήγησε να ασχοληθεί με προχωρημένη τριγωνομετρία στα 12 του χρόνια, και να ανακαλύπτει δικά του θεωρήματα στην ηλικία των 17. Επίσης απέδειξε πασίγνωστα θεωρήματα όπως του Όιλερ χωρίς να γνωρίζει ότι είχαν ήδη διατυπωθεί και αποδειχθεί.

Αργότερα στη ζωή του δέχτηκε πρόσκληση από τον ʼγγλο καθηγητή Τζ. Χ. Χάρντυ και πήγε στο Πανεπιστήμιο του Καίμπριτζ όπου πραγματοποίησε περισσότερες από 30 δημοσιεύσεις και έγινε δεκτός στην Βασιλική Κοινότητα Μαθηματικών. Δυστυχώς απεβίωσε σε ηλικία μόλις 32 ετών, λόγω βεβαρημένης υγείας και πιθανώς ηπατικής μόλυνσης που προκλήθηκε από στρες και κακή διατροφή. Αλλωστε η Αγγλία του Μεσοπολέμου δεν προσέφερε πολλές δυνατότητες για χορτοφαγική δίαιτα.

Σε ένα γράμμα προς τον Χάρντυ από το νεκροκρέβατό του στην Ινδία το 1920, περιέγραψε κάποιες μυστηριώδεις συναρτήσεις παρόμοιες με τις συναρτήσεις θήτα. Οι συναρτήσεις θήτα εμφανίζουν επαναλαμβανόμενα μοτίβα όπως οι τριγωνομετρικές συναρτήσεις του ημιτόνου και του συνημιτόνου, αλλά αρκετά πιο πολύπλοκα. Οι συναρτήσεις αυτές χαρακτηρίζονται ως «υπερσυμμετρικές», δηλαδή αν εφαρμοστεί πάνως τους η μετατροπή Moebius (μια συγκεκριμένη μαθηματική συνάρτηση), μετατρέπονται στον εαυτό τους. Αυτές οι συμμετρικές ιδιότητες των συναρτήσεων θήτα τις κάνουν ιδιαίτερα χρήσιμες σε πολλά πεδία των μαθηματικών και της φυσικής, συμπεριλαμβανομένης της θεωρίας χορδών.

ΠΗΓΗ :  ΝΑΥΤΕΜΠΟΡΙΚΗ  κλικ εδώ για το άρθρο

This entry was posted in ΕΚΠΑΙΔΕΥΣΗ-ΕΡΕΥΝΑ. Bookmark the permalink.

Leave a Reply